Algebra: Adding and subtracting fractions
Multiplication of fractions
The product of two fractions
We can multiply two fractions by multiplying the numerator by the numerator and multiplying the denominator by the denominator. \[\frac{\orange{a}}{\blue{b}} \cdot \frac{\purple{c}}{\green{d}}=\frac{\orange{a} \cdot \purple{c}}{\blue{b} \cdot \green{d}}\] |
Example \[\begin{array}{rcl} \dfrac{\orange{x}}{\blue{y}} \cdot \dfrac{\purple{5}}{\green{y^2}}&=&\dfrac{\orange{x} \cdot\purple{ 5}}{\blue{y }\cdot\green{ y^2}} \\ &=& \dfrac{{5 \cdot x}}{{y^3}}\end{array}\] |
#{{y\cdot z}\over{x-1}}#
#\begin{array}{rcl}
\dfrac{x}{z} \cdot \dfrac{y\cdot z^2}{x^2-x} &=& \dfrac{ {x} \cdot {y\cdot z^2}}{{z} \cdot \left( x^2-x\right)}\\
&& \phantom{xxx}\blue{\text{fractions multiplied by }}\\
&& \phantom{xxx}\blue{\text{multiplying numerator by numerator and denominator by denominator}}\\
&=& \displaystyle {{y\cdot z}\over{x-1}}
\\ && \phantom{xxx}\blue{\text{simplified}}\\
\end{array}#
#\begin{array}{rcl}
\dfrac{x}{z} \cdot \dfrac{y\cdot z^2}{x^2-x} &=& \dfrac{ {x} \cdot {y\cdot z^2}}{{z} \cdot \left( x^2-x\right)}\\
&& \phantom{xxx}\blue{\text{fractions multiplied by }}\\
&& \phantom{xxx}\blue{\text{multiplying numerator by numerator and denominator by denominator}}\\
&=& \displaystyle {{y\cdot z}\over{x-1}}
\\ && \phantom{xxx}\blue{\text{simplified}}\\
\end{array}#
Unlock full access
Teacher access
Request a demo account. We will help you get started with our digital learning environment.
Student access
Is your university not a partner?
Get access to our courses via Pass Your Math independent of your university. See pricing and more.
Or visit omptest.org if jou are taking an OMPT exam.
Or visit omptest.org if jou are taking an OMPT exam.