Optimization: Extreme points
Convexity and concavity
The first two facts of the partial derivatives test can be somewhat explained by the following geometric interpretation of the conditions.
Convexity and concavity
Let \(f(x,y)\) be a bivariate function.
- If no point of the line segment between any two points on the graph of #f# lies below the graph, then #f# is said to be convex.
- If no point of the line segment between any two points on the graph of #f# lies above the graph, then #f# is said to be concave.
The same definitions can be used for functions of a single variable. The graph of the function #f(x)=x^2# is a parabola opening upward and so is convex. In the bivariate version, the functions #g(x,y)=x^2# and #h(x,y)=x^2+y^2# are both convex, but the function #k(x,y)=x^2-y^2# is not.
A function #f# is convex if and only #-f# is concave.
Second order derivative test for convexity Let \(f(x,y)\) be a bivariate function all of whose partial derivatives of first and second order exist and are continuous. Assume that #D# is an open disk that is contained in the domain of #f#. Denote the Hessian of #f# by #H#. Then
- #f# is convex on #D# if and only if, for each point #\rv{a,b}# in #D#, we have \(H(a,b)\ge0\) and \(f_{xx}(a,b)\ge0\) and \(f_{yy}(a,b)\ge0\).
- #f# is concave on #D# if and only if, for each point #\rv{a,b}# in #D#, we have \(H(a,b)\ge0\) and \(f_{xx}(a,b)\le0\) and \(f_{yy}(a,b)\le0\).
In algebraic terms, the interpretation of convexity involving the line segment can be stated as follows:
- For each pair of distinct points #\rv{a,b}# and #\rv{c,d}# of #D#, and for each real number #\lambda# with #0\le \lambda\le1#, the following inequality holds \[ f\left((1-\lambda)\cdot a+\lambda\cdot c,(1-\lambda)\cdot b+\lambda\cdot d)\right)\le (1-\lambda)\cdot f(a,b)+\lambda\cdot f(c,d)\tiny.\]
Similarly, the geometric interpretation of concavity can be stated as:
- For each pair of distinct points #\rv{a,b}# and #\rv{c,d}# of #D#, and for each real number #\lambda# with #0\le \lambda\le1#, the following inequality holds \[ f\left((1-\lambda)\cdot a+\lambda\cdot c,(1-\lambda)\cdot b+\lambda\cdot d)\right)\ge (1-\lambda)\cdot f(a,b)+\lambda\cdot f(c,d)\tiny.\]
In the first case of the partial derivatives test, the conditions for concavity are satisfied on a small disk around the maximum.
- #A#, #a#, #b# are positive constants with #a+b \le 1#,
- #p#, #q#, and #r# are arbitrary constants, and
- the domain of #f# is restricted to #x \ge 0\land y \ge 0#.
You can use the following expressions for the second derivatives and the Hessian of #f#:
\[\begin{array}{rcl} f_{xx} &=& \left(A\cdot a^2-A\cdot a\right)\cdot x^{a-2}\cdot y^{b} \\
f_{xy}&=& A\cdot a\cdot b\cdot x^{a-1}\cdot y^{b-1} \\
f_{yy}&=& \left(A\cdot b^2-A\cdot b\right)\cdot x^{a}\cdot y^{b-2} \\
f_{xx} \cdot f_{yy} - f_{xy}^2 &=& -A^2\cdot a\cdot b\cdot \left(b+a-1\right)\cdot x^{2\cdot a-2}\cdot y^{2\cdot b-2}
\end{array} \]
To show that a function #f(x,y)# is concave, we check the following conditions:
\[ \begin{array}{rcl}
f_{xx} &\le& 0 \\
f_{yy} &\le& 0 \\
f_{xx}\cdot{}f_{yy}-(f_{xy})^2 &\ge& 0
\end{array} \] We check the signs of #f_{xx}#, #f_{yy}#, and the Hessian #f_{xx}\cdot{}f_{yy}-(f_{xy})^2 #.
\[ \begin{array}{rcl}
f_{xx} &=&\left(A\cdot a^2-A\cdot a\right)\cdot x^{a-2}\cdot y^{b} \\
&\le& 0 \\
&&\phantom{xxx}\color{blue}{\text{by assumption, }0\lt a\lt a+b\le 1\text{, so }a^2-a\le 0}\\
\\
f_{yy} &=& \left(A\cdot b^2-A\cdot b\right)\cdot x^{a}\cdot y^{b-2} \\
&\le& 0 \\
&&\phantom{xxx}\color{blue}{\text{by assumption, }0\lt b\lt a+b\le 1\text{, so }b^2-b\le0}
\end{array} \]
\[ \begin{array}{rcl}
f_{xx}\cdot{}f_{yy}-(f_{xy})^2 &=& \left( (a^2-a)\cdot A\cdot x^{a-2} \cdot y^b\right)\cdot \left( (b^2-b)\cdot A\cdot x^a y^{b-2}\right)\\&&\phantom{xx} - \left(a\cdot b\cdot A\cdot x^{a-1} y^{b-1}\right)^2\\
&=& a\cdot b\cdot(a-1)\cdot(b-1)\cdot A^2\cdot x^{2a-2}\cdot y^{2b-2}\\
&&\phantom{xx}-a^2\cdot b^2\cdot A^2\cdot x^{2a-2}\cdot y^{2b-2} \\
&=& a\cdot b\cdot A^2\cdot x^{2a-2}\cdot y^{2b-2}\cdot \left((a-1)(b-1)-a\cdot b\right) \\
&=& a\cdot b\cdot A^2\cdot x^{2a-2}\cdot y^{2b-2}\cdot \left(a\cdot b-a-b+1-a\cdot b\right) \\
&=& a\cdot b\cdot A^2\cdot x^{2a-2}\cdot y^{2b-2}\cdot (1-a-b)\\& \ge & 0\\
&&\phantom{xxx}\color{blue}{\text{by assumption, } a+b\le 1}
\end{array} \] Thus, by the concavity theorem, the function is concave on any open disk in the domain.
Or visit omptest.org if jou are taking an OMPT exam.